Convergence Rate of Linear Two-time-scale Stochastic Approximation1 by Vijay
نویسندگان
چکیده
We study the rate of convergence of linear two-time-scale stochastic approximation methods. We consider two-time-scale linear iterations driven by i.i.d. noise, prove some results on their asymptotic covariance and establish asymptotic normality. The well-known result [Polyak, B. T. (1990). Automat. Remote Contr. 51 937–946; Ruppert, D. (1988). Technical Report 781, Cornell Univ.] on the optimality of Polyak–Ruppert averaging techniques specialized to linear stochastic approximation is established as a consequence of the general results in this paper.
منابع مشابه
Convergence Rate and Averaging of Nonlinear Two - Time - Scale Stochastic Approximation Algorithms
The first aim of this paper is to establish the weak convergence rate of nonlinear two-time-scale stochastic approximation algorithms. Its second aim is to introduce the averaging principle in the context of two-time-scale stochastic approximation algorithms. We first define the notion of asymptotic efficiency in this framework, then introduce the averaged two-time-scale stochastic approximatio...
متن کاملEffects of Probability Function on the Performance of Stochastic Programming
Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper,a stochasti...
متن کاملAn Optimal Quantitative Two-scale Expansion in Stochastic Homogenization of Discrete Elliptic Equations
We establish an optimal, linear rate of convergence for the stochastic homogenization of discrete linear elliptic equations. We consider the model problem of independent and identically distributed coefficients on a discretized unit torus. We show that the difference between the solution to the random problem on the discretized torus and the first two terms of the two-scale asymptotic expansion...
متن کاملA computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations
A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...
متن کاملLog-Linear Convergence and Optimal Bounds for the (1+1)-ES
The (1 + 1)-ES is modeled by a general stochastic process whose asymptotic behavior is investigated. Under general assumptions, it is shown that the convergence of the related algorithm is sub-log-linear, bounded below by an explicit log-linear rate. For the specific case of spherical functions and scale-invariant algorithm, it is proved using the Law of Large Numbers for orthogonal variables, ...
متن کامل